首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11767篇
  免费   1898篇
  国内免费   1075篇
化学   8496篇
晶体学   80篇
力学   1538篇
综合类   208篇
数学   802篇
物理学   3616篇
  2024年   19篇
  2023年   164篇
  2022年   340篇
  2021年   440篇
  2020年   554篇
  2019年   465篇
  2018年   439篇
  2017年   483篇
  2016年   652篇
  2015年   566篇
  2014年   674篇
  2013年   1292篇
  2012年   756篇
  2011年   735篇
  2010年   541篇
  2009年   599篇
  2008年   605篇
  2007年   703篇
  2006年   629篇
  2005年   541篇
  2004年   477篇
  2003年   425篇
  2002年   356篇
  2001年   262篇
  2000年   251篇
  1999年   207篇
  1998年   199篇
  1997年   174篇
  1996年   136篇
  1995年   163篇
  1994年   105篇
  1993年   127篇
  1992年   104篇
  1991年   82篇
  1990年   68篇
  1989年   44篇
  1988年   49篇
  1987年   45篇
  1986年   36篇
  1985年   45篇
  1984年   31篇
  1983年   20篇
  1982年   26篇
  1981年   16篇
  1980年   16篇
  1979年   15篇
  1978年   11篇
  1976年   10篇
  1974年   7篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 26 毫秒
61.
A detailed chemical kinetic model has been developed for supercritical water oxidation (SCWO) of methylamine, CH3NH2, providing insight into the intermediates and final products formed in this process as well as the dominant reaction pathways. The model was adapted from previous mechanisms, with a revision of the peroxyl radical chemistry to include imine formation, which has recently been identified as the dominant gas-phase pathway in amine oxidation. The developed model can reproduce previous experimental data on methylamine consumption and major product formation to reasonable accuracy, although with deficiencies in describing the induction time. Our simulations indicate that oxidation of the CH2NH2 radical to methanimine, CH2NH, is the major channel in methylamine SCWO, with subsequent hydrolysis of CH2NH providing the experimentally observed reaction products ammonia and formaldehyde. Integral-averaged reaction rates were used to identify major reaction pathways, and a first-order sensitivity analysis indicated that the concentration of CH3NH2 is most sensitive to OH radical kinetics. Overall, this work clarifies the importance of imine chemistry in the oxidation of nitrogen-containing compounds and indicates that they are necessary to model these compounds in SCWO processes.  相似文献   
62.
The biologically active alkaloid muscimol is present in fly agaric mushroom (Amanita muscaria), and its structure and action is related to human neurotransmitter γ-aminobutyric acid (GABA). The current study reports on determination of muscimol form present in water solution using multinuclear 1H and 13C nuclear magnetic resonance (NMR) experiments supported by density functional theory molecular modeling. The structures of three forms of free muscimol molecule both in the gas phase and in the presence of water solvent, modeled by polarized continuous model, and nuclear magnetic isotropic shieldings, the corresponding chemical shifts, and indirect spin–spin coupling constants were calculated. Several J-couplings observed in proton and carbon NMR spectra, not available before, are reported. The obtained experimental spectra, supported by theoretical calculations, favor the zwitterion form of muscimol in water. This structure differs from NH isomer, previously determined in dimethyl sulfoxide (DMSO) solution. In addition, positions of signals C3 and C5 are reversed in both solvents.  相似文献   
63.
Random copolymers of poly(4-vinylpyridine) and polyisoprene were synthesized, and subsequently quaternized with 1-alkylbromides. The number of carbons on the pendant side-chain of the resultant comb-shaped polymer, n, ranged from 2–8. The comb-shaped polymers were crosslinked employing thiol-ene chemistry to give mechanically robust ion conducting membranes. Analysis by wide and medium-angle X-ray scattering show three morphology regimes that are dependent on the number of carbons on the pendant side-chains. When n = 2, ionomer cluster morphology was dominant, when n = 8 backbone-backbone morphology was dominant, and when n = 3–6, the membrane showed a coexistence of both ionomer cluster and backbone-backbone morphologies. Evaluation of the water uptake of the membranes showed a maximum water uptake per cation of 9.5 when n = 5 at 95% relative humidity (RH) and 60°C. Conductivity of the samples characterized by electrochemical impedance spectroscopy showed bromide conductivity as high as 110 mS/cm when n = 3 at 95% RH and 90°C.  相似文献   
64.
The development of high-efficiency, low-cost, and earth-abundant electrocatalysts for overall water splitting remains a challenge. In this work, Ni-modified MoS2 hybrid catalysts are grown on carbon cloth (Ni-Mo-S@CC) through a one-step hydrothermal treatment. The optimized Ni-Mo-S@CC catalyst shows excellent hydrogen evolution reaction (HER) activity with a low overpotential of 168 mV at a current density of 10 mA cm−2 in 1.0 m KOH, which is lower than those of Ni-Mo-S@CC (1:1), Ni-Mo-S@CC (3:1), and pure MoS2. Significantly, the Ni-Mo-S@CC hybrid catalyst also displays outstanding oxygen evolution reaction (OER) activity with a low overpotential of 320 mV at a current density of 10 mA cm−2, and remarkable long-term stability for 30 h at a constant current density of 10 mA cm−2. Experimental results and theoretical analysis based on density functional theory demonstrate that the excellent electrocatalytic performance can be attributed mainly to the remarkable conductivity, abundant active sites, and synergistic effect of the Ni-doped MoS2. This work sheds light on a unique strategy for the design of high-performance and stable electrocatalysts for water-splitting electrolyzers.  相似文献   
65.
Interface engineering has been applied as an effective strategy to boost the electrocatalytic performance because of the strong coupling and synergistic effects between individual components. Here, we engineered vertically aligned FeOOH/CoO nanoneedle array with a synergistic interface between FeOOH and CoO on Ni foam (NF) by a simple impregnation method. The synthesized FeOOH/CoO exhibits outstanding electrocatalytic activity and stability for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in an alkaline medium. For the overall water splitting, the bifunctional FeOOH/CoO nanoneedle catalyst requires only a cell voltage of 1.58 V to achieve a current density of 10 mA cm−2, which is much lower than that required for IrO2//Pt/C (1.68 V). The FeOOH/CoO catalyst has been successfully applied for solar cell-driven water electrolysis, revealing its great potential for commercial hydrogen production and solar energy storage.  相似文献   
66.
Photoelectrochemical (PEC) water splitting is a promising method for the conversion of solar energy into chemical energy stored in the form of hydrogen. Nanostructured hematite (α-Fe2O3) is one of the most attractive materials for a highly efficient charge carrier generation and collection due to its large specific surface area and the short minority carrier diffusion length. In the present work, the PEC water splitting performance of nanostructured α-Fe2O3 is investigated which was prepared by anodization followed by annealing in a low oxygen ambient (0.03 % O2 in Ar). It was found that low oxygen annealing can activate a significant PEC response of α-Fe2O3 even at a low temperature of 400 °C and provide an excellent PEC performance compared with classic air annealing. The photocurrent of the α-Fe2O3 annealed in the low oxygen at 1.5 V vs. RHE results as 0.5 mA cm−2, being 20 times higher than that of annealing in air. The obtained results show that the α-Fe2O3 annealed in low oxygen contains beneficial defects and promotes the transport of holes; it can be attributed to the improvement of conductivity due to the introduction of suitable oxygen vacancies in the α-Fe2O3. Additionally, we demonstrate the photocurrent of α-Fe2O3 annealed in low oxygen ambient can be further enhanced by Zn-Co LDH, which is a co-catalyst of oxygen evolution reaction. This indicates low oxygen annealing generates a promising method to obtain an excellent PEC water splitting performance from α-Fe2O3 photoanodes.  相似文献   
67.
Efficient exfoliation and downsizing of Sb2S3 and Bi2S3 layered compounds by using scalable bipolar electrochemistry on their suspensions in aqueous media are here demonstrated. The resulting samples were characterized in detail by transmission electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy; their electrochemistry toward hydrogen evolution was also investigated. Hydrogen evolution ability of exfoliated Sb2S3 and Bi2S3 was investigated and compared to the bulk counterparts.  相似文献   
68.
As a hot topic of global concern, the distinguishing and detecting of antibiotic pollution is crucial owing to its adverse effect on ecosystems and human health stemming from excessive use and poor management. Herein, a water-stable lanthanide coordination polymer sensor (Dy-TCPB) with multiple emitting centers is prepared. The versatile Dy-TCPB can conveniently differentiate various antibiotics, and displays a self-calibration luminescent response to nitrofurazone (NFZ) and furazolidone (FZD). Each antibiotic exhibits notable correlation to a unique combination of the two ligand-to-Dy ion emission intensity ratios, enabling two-dimensional fingerprint recognition. Furthermore, the novel self-calibration sensor demonstrates effective recognition of NFZ and FZD with excellent sensitivity and selectivity, and detection limits as low as 0.0476 and 0.0482 μm for NFZ and FZD, respectively. The synthetic approach for the fabrication of a singular coordination polymer exhibiting multiple emissions provides a promising strategy for the development of facile and effective ratiometric sensors.  相似文献   
69.
Ever-evolving catalyst advances in synthetic protocols using water as a reaction medium have enriched the understanding of sustainable organic chemistry. Because conventional classification and definitions were ambivalent, it is proposed here that catalytic reactions using water be collectively called to be “in water”, with further classification into seven types. When accelerated in water as heterogeneous mixtures, the reactions can be regarded as following an “on-water” mechanism. The original term “on water” coined by Sharpless is incongruous with catalytic reactions, whereas on-water used in this review covers all the interfaces involving water where chemical reactions are accelerated. As a result of the unconcluded dispute on the antiquated catalyst-free “on water” model, the modified model defines three water layers: water molecules that are oriented to extrude protons toward the oil phase in the inner layer, those enwrapped by a secondary layer, and finally the bulk water layer. In light of the latitudinous outlook on the role of water at the interface, selected examples of reactions, in particular those reported over the past decade, that follow an “on-water” mechanism are reviewed herein.  相似文献   
70.
As promising fresh-water purification devices, solar steam generation systems have attracted significant attention recently. However, in practice, the approach often suffers from a poor solar energy conversion efficiency and a low water production rate due to poor material selection and inefficient microscopic structure design. Here, we fabricate an efficient solar steam generation system by “building” polyoxometalate “nano-walls” on rice paper-derived three-dimensional porous carbon paper. In this solar steam generation system, the height of the vertically aligned CoP4Mo6 “nano-walls” range from 100 to 150 nm with thicknesses about 15 to 25 nm. Under 1 sun irradiation (1 sun = 1 kW m−2), the surface temperature increases from 29 to 50 °C in a short time with a solar thermal conversion efficiency achieving 92.8 %. The stability and durability of this solar steam generation system, which withstands fifteen cycle continuous tests, also offer good prospects. Its attractive solar energy conversion performance originates from the intense sunlight absorption and high conversion ability of the CoP4Mo6 “nano-walls”, as well as extremely promising heat localization and water transportation properties of the three-dimensional porous carbon paper. This solar steam generation system, which has produced some inspiring results, is employed for seawater desalination and for purification of water polluted with organic dyes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号